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Convent Av. and 140th Street, New York, NY 10031, USA 

(Received 13 April 1994 and in revised form 26 June 1995) 

Four high-frequency-response pressure transducers with 10 viscous units resolution 
each have been used to obtain simultaneously the fluctuating pressure gradients at the 
wall of a zero-pressure-gradient boundary layer and then to compute the vorticity flux 
away from the wall. Since the viscous force on an element of incompressible fluid is 
determined by the local vorticity gradients, understanding of their dynamical 
characteristics is essential in identifying the turbulent structure. Extremely high and 
low amplitudes of both vorticity gradients have been observed which contribute 
significantly to their statistics although they have low probability of appearance. The 
r.m.s. of the vorticity flux when scaled with inner wall variables depends very strongly 
on the Reynolds number, indicating a breakdown of this type of scaling. The 
application of a small threshold to the data indicated two preferential directions of the 
vorticity flux vector. An attempt has been made to identify these high- and low- 
amplitude signals with physical phenomena associated with bursting-sweep processes. 
Vortical structures carrying bipolar vorticity are the dominant wall structures which 
are associated with the violent events characterized by large fluctuations of vorticity 
flux. 

1. Introduction 
The role of vorticity, defined as the curl of the velocity vector, in better understanding 

various fluid dynamics phenomena, is well established. Lighthill (1963) in his wide- 
ranging introduction to boundary-layer theory, provided an extensive description of 
vorticity dynamics in a variety of flows by using vorticity as a primative variable for 
theoretical considerations. He was also the first to introduce the concept of ‘vorticity 
flux’ density and to point out the significance of solid boundaries as distributed sources 
or sinks of vorticity. Vorticity production at a solid boundary can be described in terms 
of vorticity flux. Lighthill (1963) defined the term for two-dimensional flows by 
analogy to Fourier’s heat conduction law as 

-vE) W , 

where o is the vorticity vector and v the viscosity, and Panton (1984) extended this 
approach to include three-dimensional flows by defining vorticity flux as 

d = - v (n .Vo) , ,  (2) 
where n is the normal vector to the surface, towards the fluid (see figure 1 for the 
coordinate system). 
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FIGURE 1. Boundary-layer flow schematic and coordinate system. 
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FIGURE 2. Lighthill's (1963) mechanism of vorticity acquisition 
of an initially irrotational fluid element. 
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Lyman (1990) pointed out that the analogy to Fourier's law may not be exact in 
three-dimensional flows. He proposed an alternative definition of vorticity flux as 

un x (V x 0). (3) 
Although both definitions (2) and (3) express the rate of vorticity production per unit 

area of surface, they are not equivalent. This is easily seen by examining their 
components at a solid surface. When integrated over a closed control surface, however, 
both definitions give the same result because as shown by Lyman (1990) and Panton 
(1 984) 

(4) 

where the last integral represents the result of integrating the viscous diffusion term in 
the vorticity transport equation while the other two surface integrals are identified as 
the result of integrating the vorticity flux. 

Lighthill has also pointed out that vorticity flux is directly related to pressure 
gradient at the wall, although the transport equation of vorticity contains no pressure. 
If the momentum equation is evaluated at the wall beneath a turbulent flow it yields 

-JJs v(n.Vo)dS = vn x (V x o ) d S  = Js, vV20dV, ssJs 

[;:Iw =-[+I W , 

[ ; $ ] , = [ v 3  W 3 

where p is the pressure and w,,o, are the longitudinal and transverse vorticity 
components. Figure 2 shows how Lighthill has depicted the mechanism of vorticity 
acquisition of an initially irrotational small fluid ball at the wall beneath a flow: a 
pressure gradient tangential to the boundary causes the fluid ball to roll along a 
stationary wall due to the non-slip condition at the wall. 

In the present work the following definition has been adopted for the vorticity flux, 
at a stationary wall beneath viscous flows: 

a, = -vF$],i-vk] W k, (7) 

where i , j ,  k are unit vectors in the x-, y- and z-directions respectively. This definition, 
which in fact is Lyman's suggestion, enables one to measure directly vorticity flux at 
the wall by measuring the pressure gradients along the wall. 

None of the above equations are time-averaged relations and therefore they can 
provide time-dependent information on the vorticity flux entering the flow which 
cannot be obtained by considering vorticity at the wall. This value is related to the wall 
shear stress z, through 

(8 a) 
7w ow x n = -, 
P 

where ow is the vorticity vector at the wall. For two-dimensional flows and after time 
averaging, (8 a) becomes - 

gz = k. (8 b) 
P 

This relation indicates that when the skin friction is known, the value of w, at the wall 
can be found. 

If the pressure gradients applax and C)p/C)y can be measured instantaneously, the 
vorticity flux away from the wall can be computed through (5),  (6)  and (7) as a time- 
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dependent function. Then the vorticity change shed from the solid boundary and 
sensed at a nearby point inside the flow at a distance Ay from the wall, to a first-order 

and Awz = -r$] Ay. 
W 

Since Ay > 0 always, the signs of i?p/ax and dp/ay determine whether the wall acts as 
a source or sink of vorticity. 

Time-resolved measurements of the wall pressure fluctuations, or wall shear stress or 
wall velocity gradient have the potential of revealing significant information on the 
wall turbulence structure. Johansson, Her & Haritonidis (1987), Thomas &Bull (1983), 
Haritonidis, Gresko & Breuer (1988), for instance, measured wall pressure fluctuations 
and shear stress which revealed a strong coupling between wall pressure and flow 
structures near the wall, while Hanratty (1988) demonstrated the existence of a flow 
pattern containing a large number of counter-rotating eddies. Although the structure 
of the near-wall turbulence has been extensively investigated over the past thirty years, 
the basic mechanism for turbulence production and transport is not well understood. 
Mutual interactions between various structures present in the near-wall region and 
between inner- and outer-layer flow complicate the understanding of turbulence 
structure. Despite this lack of understanding it is well documented that in the vicinity 
of the wall, the flow has been found to be highly organized, consisting of regions of 
high- and low-speed fluid alternating in the spanwise direction (Kline et al. 1967). The 
existence of streamwise vortices and shear layers emanating from the wall have also 
been observed experimentally by Blackwelder & Eckelman (1979) and Johansson et al. 
(1987). Several of the structures found to exist in near-wall turbulence have also been 
observed in direct numerical simulations (Moin & Kim 1985; Jimenez & Moin 1991 ; 
Kim 1989). 

The objective of the present investigation is to increase our understanding of the 
vorticity dynamics in the region very near to the wall of a zero-pressure-gradient, 
two-dimensional turbulent boundary layer. This has been accomplished by measuring 
the wall pressure gradient (n  x Vpw)  = (ap/az) i- (applax) k as a function of time and 
subsequently computing the vorticity gradients and vorticity flux away from the wall 
by using the previously mentioned relations. The paper reports on measurements of 
vorticity flux obtained at various Reynolds numbers. To our knowledge this type of 
measurement has not been attempted before. 

2. Experimental set-up and instrumentation 
The experiments were performed at the CCNY large-scale wind tunnel, which is 

powered by a 20 b.h.p. frequency-controlled motor which provides 40000 c.f.m. of air 
at a maximum free-stream velocity of approximately 11 m s-'. The rectangular flow 
inlet is 12 ft by 12 ft and includes a honeycomb and five mesh screens. The test section 
is 4 ft by 4 ft and 28 ft long. Qualification measurements indicate a 0.08 % turbulence 
intensity in the free stream at maximum velocity and 0.15 YO at 3 m s-l. To minimize 
vibration, the working section was isolated from the downstream axial fan and motor. 
The motor and fan assembly is housed in a sound-absorbing diffuser with porous wall 
thus allowing low noise operation of the facility and low levels of acoustical noise 
transmitted in the working section. 
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FIGURE 3. Pressure transducer configuration. 

The boundary layer is developed on the floor of the wind tunnel and it was tripped 
by means of a t in. wide strip of sandpaper of medium grit glued on the wind tunnel 
wall at the end of the contraction. All measurements took place at a distance 4 m  
downstream of the beginning of the working section. Six experiments were run at 
different Reynolds numbers. Table 1 shows the nominal flow parameters of the 
incoming boundary layers. The skin-friction coefficient was determined through 
Clausert chart plots and Preston tube measurements. Four high-frequency-response 
and high-sensitivity subminiature pressure transducers model XCS-062-5-D, as 
supplied by Kulite Semiconductor Products, were used to determine the wall pressure 
gradients @/ax and @/dy by measuring the time-resolved pressure simultaneously at 
all transducers. The resonant frequency of these transducers as stated by the 
manufacturer was 150 KHz. Shock-tube tests, including static and dynamic cali- 
brations, in our laboratory and elsewhere, indicate a frequency response of the 
transducers close to this value. Considerable attention has been given to the spatial 
resolution of the transducers in the viscous subrange. Their sensing area was circular 
with 0.71 mm diameter. Table 1 also indicates the corresponding transducer size d+ ,  
expressed in viscous lengthscales v/u,, of the various experiments. As will be discussed 
later, the resolution of the present experiments compares quite favourably with that 
obtained by other investigators. In fact, to the best of our knowledge, the present case 
of the lowest Re, = 3150 represents an experiment with the most resolved scales of 
pressure fluctuations so far. Schewe (1983) has documented that pressure transducers 
of diameter d+  M 20 are able to resolve pressure signatures significant to the structure 
of turbulence. 

The smallest scale encountered in the flow is of the order of the Kolmogorov 
lengthscale 7 = [ v ~ / E ] ~ / ~  where E is the dissipation rate of the turbulent kinetic energy. 
Determining 7 requires a good estimate of E ,  which is very difficult to measure, 
particularly at the wall, where it has never been measured. Honkan (1994) has recently 
measured 8 above the wall at y+ = 12.5 by using a nine-wire vorticity probe similar to 
the probe of Bah t ,  Wallace & Vukoslavcevic (1991). His work was carried out in the 
same wind tunnel facility as the present investigation and under very similar flow 
conditions. His results agree rather well with the measurements of B a h t  et al. (1991) 
as well as with those of Klewicki & Falco (1990). If Honkan’s estimate of E is 
extrapolated to the wall and used in the present analysis, the size of the pressure 
transducers appears to be between qd = 1.5 and 2.6. 

The pressure transducers were placed close to each other, at a distance of 
Ax = 1.6 mm inside the plywood wall of the wind tunnel so that the pressure 
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transducer surface was flush with the internal wall beneath the flow. Figure 3 shows the 
configuration of the four transducers that measured time-resolved gradients sim- 
ultaneously. The following pressure gradients have been computed by using a finite- 
difference scheme : 

aPzl Pz -P1 aP14 PI -P4 
ax AX a Z  

N- N- -.- 
Az ' 

The distances Ax, Az non-dimensionalized by the viscous length of each experiment are 
also listed in table 1. 

In addition to these pressure gradients which are associated with the xoz coordinate 
system, pressure gradients associated with the x'oz' coordinate system, which is at 45" 
to the original, are also evaluated by considering the diagonal transducers only: 

In this case, Ax' = Az' = d2 A x .  These pressure gradients can be transformed 
instantaneously back to the original xoz coordinate system by a -45" rotation of the 
x'oz' system. Thus the results obtained by considering the diagonal transducers only 
can be used to provide additional estimates of the vorticity flux in the xoz system. 

The transducers were calibrated frequently in the calibrator model supplied by 
Thermo-Systems Inc. Signal conditioning for each analog output of the Kulite 
transducers was provided by a four EG & G Parc model 113 low-noise differential 
preamplifiers and four Khon-hite band-pass filters model 3323. Data acquisition was 
provided by a DAS-20 Metrabyte Analog to Digital Converter daisy chained to a 
simultaneous sample and hold board all configured on a IBM 386/25 desktop 
computer. The acquired data were transferred to a DEC 3100 workstation where the 
major analysis was carried out. The sampling frequency interval expressed in terms of 
viscous time units v/u," is shown in table I .  To minimize the effect of electronic noise 
contamination all instruments were powered by batteries and not line power using 
transformers. The signals were high-pass filtered at 0.01 Hz and low-pass filtered at 
5000 Hz. By recording the a.c component of the signal, the signal-to-noise ratio was 
drastically improved. Acoustical background noise and vibration tests, with or without 
the flow, indicate a 6: 1 signal-to-noise ratio for the lowest Re, = 3100 experiment 
which showed the weakest pressure fluctuations and the worst signal-to-noise ratio of 
all the investigated cases. An attempt to obtain meaningful data at Re, = 1900 failed 
to produce better than a 2: 1 signal-to-noise ratio. 

3. Probe resolution 
Near-wall measurements are extremely difficult to obtain because the wall imposes 

tight physical constraints on the required probe measuring volume which determine the 
measuring position nearest to the wall and the spatial resolution. The problem of 
spatial resolution of probes is essentially three-dimensional, although the high-velocity 
gradients in the direction normal to the wall impose more severe requirements on 
resolution in this direction than in the other two directions. For a probe placed at the 
wall beneath the flow, however, spatial resolution needs to be considered in two 
dimensions. 
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FIGURE 4. Spectral attenuation due to spatial resolution: - -  --, pressure (Corcos 1963); - --, pressure 
(present analysis based on data by Willmarth & Wooldridge 1962); -...-...- , pressure (present 
analysis based on data by Farabee & Casarella 1991); -, vorticity flux (present analysis based on 
data by Willmarth & Wooldridge 1962) ; -. - + -. -, vorticity flux (present analysis based on data by 
Farabee & Casarella 1991). 

In order to evaluate the response characteristics of the vorticity-flux probe to 
turbulent flows with scales smaller than its size, an extension of the theories of Corcos 
(1963) and Willmarth & Roos (1965) on resolution of pressure measurement has been 
attempted. The present analysis, which is carried out under the same basic assumptions 
as the work of Corcos, is described in detail in the Appendix. Typical results of this 
analysis are shown in figure 4 where the attenuation of power spectral densities of 
vorticity flux and pressure fluctuations are plotted. Here & and q5t represent the 
measured and true spectral densities respectively, r is the radius of a single transducer 
and U, is the convection velocity. The tabulated data of Corcos for the attenuation of 
pressure fluctuations are also plotted in the same figure for comparison. The present 
data for pressure fluctuations, which were obtained numerically, agree fairly well with 
Corcos' results. 

Corcos' analysis, however, is based on the decay rates A(@$/ U,) and 3(q/ U,> of the 
cross-spectral density introduced to fit the wall pressure data of Willmarth & 
Wooldridge (1962) which were obtained with a transducer of size d+ = 410 at the 
rather high Re, = 29000 (see table 2). The present investigation has been carried out 
with non-dimensional transducer size between 10 and 19 at lower R,. Since cross- 
spectral densities of pressure fluctuations, which could provide new estimates of A and 
B, were not measured, the validity of the present analysis was verified by using values 
of A and B from the work of Farabee & Casarella (1991) obtained with a transducer 
size of d+ = 33. These experimental data show a faster decay than the data of 
Willmarth & Wooldridge. The results of the present analysis by using A and B 
functions based on the data of Farabee & Casarella are also shown in figure 4. The 
attenuation of the power spectral densities of pressure fluctuations predicted by using 
Farabee & Casarella's data is close to that predicted by using Willmarth & 
Wooldridge's values of A and B. The two predictions differ at higher frequencies. 
However, there is practically no difference between the two results for the vorticity flux. 
Both data sets of A and B values, although different by 70%, yield almost identical 
attenuation of vorticity flux. It appears therefore plausible to conclude that the 
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FIGURE 5. Pressure fluctuations and skin friction coefficient as a function of Re,. 

estimates of the attenuation of vorticity flux obtained in the present study are not 
sensitive to large changes of A and B values. 

It is evident that the attenuation of vorticity flux predicted by the present analysis 
is more pronounced than that of pressure. Hence, the true frequency spectrum of 
vorticity flux # t ( ~ )  for scales smaller than the probe size cannot accurately be recovered 
from measurements. Correction procedures may provide an estimate of the power 
spectral density in a frequency range over which the probe spatial resolution effects are 
important. No corrections have been applied to the present data. 

4. Results 
4.1. Pressure fluctuation statistics and spectra 

In this section a comparison will be attempted between the present experimental results 
and existing data of other investigators. Figure 5 shows the root-mean-square (r.m.s.) 
pressure fluctuations normalized by the dynamic pressure of the free-stream flow +pU,Z 
as a function of the Reynolds number together with Schewe’s (1983) data. The results 
clearly show a reduction of cpt with increasing Re,. The measured skin-friction values 
are also plotted on the same figure together with the results of Schewe (1983) and 
Spalart (1988)’ although the latter were obtained at different Re,. The present results 
are 2 4 %  higher than the values obtained by Cole’s (1962) analysis of Weighard’s 
data. It has been argued by Willmarth & Wooldridge (1962), and Willmarth (1975) that 
the ratio of r.m.s. pressure fluctuations to the local shear stress 7, is always between 
2 and 3. This has also been supported by more recent experimental results and direct 
numerical simulations. This ratio p+ = p’/7, = p‘/pu,” is plotted in figure 6(a) together 
with Schewe’s experimental data and the results of Spalart’s (1988) numerical 
simulations. As can be seen from this figure, the present data indicate a rather weak 
Reynolds number dependence of r.m.s. pressure fluctuation, particularly in the low- 
Re, region. Schewe’s value obtained with a pressure transducer of diameter d+ = 21 is 
considerably lower than Spalart’s value at the same Ree, but only slightly lower than 
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3 

P+ 2 

1 

Re' 

FIGURE 6. Pressure fluctuations scaled by inner wall variables as a function of 
(a) Re,, (b) Re* = S*/v. 

the present value ofp+ at the highest Re, = 5400 which was obtained with a transducer 
of comparable resolution, d+ = 19. 

It has been argued by Bradshaw (1967) that the - 1 slope of the frequency spectra 
suggests that p+ is a function u,S/v, i.e. of the outer to inner scale ratio of the 
boundary-layer flow. This ratio, however, is better expressed in terms of u, S*/v where 
6* is the displacement thickness. Figure 6(b) shows the dependence of p +  on 
Re* = u,S*/u. The data of McGrath & Simpson (1987) and Blake (1970) do not 
demonstrate any Re* dependence. In addition they are considerably higher than the 
rest of the data under comparison. The present experimental data together with the 
data of Spalart and Schewe clearly follow the same pattern, indicating that p+ increases 
with Re*. The data of Bull (1967) and Willmarth & Wooldridge (1962) suggest a 
different trend. These data, however, have been obtained with relatively large pressure 
transducers, d+ = 173 and 410 respectively. Schewe (1983) and more recently Keith, 
Hurdis & Abraham (1992) have shown that poor spatial resolution can lead to 
substantial errors in estimating pressure fluctuation r.m.s. and spectral densities. In 
that respect these data should be treated with considerable caution. Comparison of the 
present data with data obtained in channels has not been attempted here because the 
work of Keith et al. (1992) has indicated that considerable difference exists in the 
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h N 

-3  -2 -1 0 1 

FIGURE 7. Power spectral densities of pressure fluctuations scaled by inner wall variables. 
See table 2 for symbols. 

Investigation Re, d+ Symbols 

A-- Willmarth & Wooldridge (1 962) 29000 410 _ _  
Hasan et al. (1986) 3389 505 .................. 

Present Exp. 1 3 100 lo  *+*+.- 
Present Exp. 6 5 400 19 -0-0-0-0-0- 

_ _ _ _ _  Devenport et al. (1990) 7 590 33 (estimated) 
Haritonidis et al. (1988) 4 340 19 

TABLE 2. Data for experiments shown in figure 7 

spectral levels of pressure fluctuations between external flows like a boundary layer and 
internal flows like a channel flow. 

Typical power spectral densities (p.s.d.) for the two Re,, 3100 and 5400, of the 
present data are shown in figure 7 plotted in terms of inner wall variables. The data of 
Willmarth & Wooldridge (1962), Hasan, Casarella & Rood (1986), and Devenport et 
al. (1990) are also plotted for comparison. All the data have been obtained in different 
facilities under different conditions, pressure transducer sizes and equipment. Table 2 
shows the transducer size and the corresponding Re, of these experiments. 
Microphones were used in all cases except the present one. As can be seen from figure 
7, the present data agree fairly well with the results of the previously mentioned 
investigations bearing in mind the uncertainties involved, such as background noise 
and inadequate spatial resolution. The results of the present investigation for the two 
Re, shown in figure 7 agree fairly well with each other particularly in the low-frequency 
range, W+ < 0.2. 

In the region W+ > 0.2 the p.s.d. values of the high-Re, experiment seem to fall off 
slightly faster than the low-Re, case, most probably due to the difference in the spatial 
resolution of scales. The same figure also shows the w-l and w - ~ / '  variations normally 
expected in two-dimensional boundary-layer flows. The present results for both Re, 
values and the results of Willmarth & Wooldridge show a large region of w-l variations 
as suggested by Bradshaw (1967) and Kim (1989) and a rather short region of w - ~ / ~  as 
suggested by Schewe (1983). In fact the present p.s.d. values seem to exhibit a w-'j4 



56 

v) v) 

0 

E O 1  
# 

-0.2 

-0.4 

0.5 

L 

- A  
- 

- 

0.4 

0.3 
"; 

0.2 
-2 

J .  Andreopoulos and J .  H .  Agui 

0.1 

0 

P/P,s 

FIGURE 8. Probability density function of pressure fluctuations. 
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FIGURE 9. Skewness of pressure fluctuations as a function of Re,. 

power law in the high-frequency part of the spectrum w+ > 0.3 where the flow may be 
locally isotropic. It should be noted that Panton & Gilles (1992) suggest a -2 slope for 
the viscosity-dominated equilibrium region of the spectrum. It is not at all certain that 
such an equilibrium region exists in the present spectra. The fact, however, that the 
slope - 7/4 of the present data is less than - 2 suggests that this region could be traced 
at higher w+ if greater resolution were available. 

Figure 8 illustrates the probability density function (p.d.f.) of pressure fluctuations 
at two different Re,. The Gaussian distribution is also plotted for comparison. The 
present results clearly show that there is an asymmetry in the distribution at both Reo, 
indicating that the probability of higher negative values of pressure amplitudes is 
somewhat greater than the probability of positive values of pressure amplitudes. This 
is also indicated by the skewness of pressure fluctuations plotted in figure 9. All present 
experimental data as well as the data of Schewe (1983) and the direct numerical 
simulation results of Kim (1989) exhibit a negative skewness. Haritonidis et al.'s (1988) 
data indicate a positive value of the skewness although their probability densities are 
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FIGURE 10. Typical pressure signals, Re, = 5400. p1 is displaced by 0.5 units, pp by -0.5 
andp, by -1 .5 .  

clearly skewed towards the negative values. Another significant characteristic, which 
was first observed by Schewe (1983) and Haritonidis et al. (1988) is that the appearance 
of extremely low and high amplitudes of pressure fluctuations is more frequent than in 
a process obeying a Gaussian distribution. Large-amplitude fluctuations of the order 
of + 5  pr,m,s. have been observed in the present investigation as well as in the 
experiments of Schewe and Haritonidis et al. They may be associated with intermittent 
phenomena of significant importance in the near-wall region. Kim (1989) and Spalart 
(1 988) noticed that a strong correspondence exists between low-pressure regions and 
streamwise vortices. It is possible that the intermittent appearance of low-pressure 
fluctuations in the p.d.f. is associated with the vortices present in the flow. 

It is obvious that the results of this investigation presented so far do not show a 
strong Re, dependence. In addition, the good agreement of the present pressure 
statistics and power spectral densities with those obtained by other researchers in 
different facilities and under different conditions, first suggests that the present 
boundary-layer flow follows the expected behaviour and secondly provides confidence 
in the techniques applied and probes used in this investigation and improves the 
credibility of the measurements of vorticity fluxes away from the wall. 

4.2. Vorticity j lux  signals and statistics 
The pressure signals from transducers 1, 2 and 4 were used to compute the pressure 
gradients shown in equation (1 1) and subsequently the vorticity gradients i3uz/i3y and 
i3uz/i3y were evaluated at the wall. Figure 10 shows some typical pressure signals 
obtained at Re, = 5400 and figure 11 illustrates the corresponding vorticity 
gradients/fluxes. The values of pressure and time have been non-dimensionalized by 
using inner-layer scaling. When examining the simultaneous pressure traces for 
similarities it was obvious that all signals were highly correlated. A common way of 
characterizing the degree of correlation is to compute the correlation coefficient defined 
as 

Coefficients with values between 0.86 and 0.91 have been obtained in the present 
experiments. The resultant vorticity gradient/flux signals are for some reason 
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FIGURE 11. Typical vorticity gradient signals, Re, = 5400. 
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FIGURE 12. Statistics of vorticity flux fluctuations: r.m.s. variation with Re, (inner wall scaling). 
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correlated to a lesser extent than the pressure signals. They indicate some intense 
vortical activities on the wall without any time intervals of no activity. Another 
characteristic of these signals is that each signal spends time on the positive as well as 
on the negative side confirming that a solid wall can act as a source as well as a sink 
of vorticity. 

The statistics of the vorticity-flux signals at various Re, are plotted in figure 12, 15, 
16 and 17. Figure 12 illustrates the r.m.s. variation of the vorticity gradients with Re,. 
The results indicate a rather strong dependence of these gradients on Re,, which may 
suggest a possible breakdown of inner wall scaling. Although the spatial resolution of 
the probe is deteriorating with increasing Re, it cannot account for the sharp fall of the 
r.m.s. at high Re,. It is interesting to observe that while pressure fluctuations scale 
rather satisfactorily with inner wall variables, pressure gradient/vorticity flux 
fluctuations do not. 

Since the present measurements of vorticity flux are, to the best of our knowledge, 
the first of their kind, no previous data exist for direct comparison. There is however 
an estimate of the r.m.s. of the gradient ,‘~+/i3y+~ at the wall obtained by Lu & Smith 
(1983). This is also plotted in figure 12. These authors measured this velocity derivative 
near to the wall by using hot wires and hot films. Then, by using orthogonal 
decomposition, they calculated the r.m.s. of this derivative inside the flow and 
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extrapolated these values to the wall, finding a value of 0.053 at the wall. They 
considered these values to be underestimates of the true values because very few 
eigenmodes were included in the decompositions. In fact these values, at positions just 
off the wall inside the flow, are 30-50% lower than the measured values. After 
considering this, it appears that the present data compare satisfactorily with the 
estimate of Lu & Smith (1988). 

In order to obtain independent estimates of the r.m.s. of vorticity gradients at the 
wall from the present data, several alternative methods have been attempted. First, the 
values of the cross-correlation coefficient Rii have been used to compute the r.m.s. of 
vorticity flux. Consider, for instance, the pressure difference p2 -p l  and its r.m.s. 

_ _  
[(p, -p1)2]1/2 = [pi +p: - 2R12(~)1 ’2 (~ )1 ’2 ]1 /2 .  

By considering that 

it can be shown that [2(1 - R12)1’i2p+. 

Ax+ 

Thus the r.m.s. of vorticity flux can be obtained from the measurements of R,, and the 
r.m.s. of pressure fluctuations. These results are plotted in figure 12. They agree 
remarkably well with the data obtained directly from the pressure gradients described 

A second estimate of the r.m.s. of vorticity flux has been obtained by considering the 
pressure gradients in the diagonal directions as indicated by equation (13) and then 
transforming the time-dependent data into the xoz coordinate system. The results of 
this are also plotted in figure 12. It appears that they are lower than both previous 
estimates : those obtained from the pressure gradients in the original xoz coordinates 
and those obtained from the cross-correlation data. The difference is about 14 YO at the 
low Re, and about 25 YO at the highest Re,. This discrepancy, however, is not surprising 
since signal attenuation has resulted from a deterioration in spatial resolution. In the 
case of diagonal pressure gradients the separation between the pressure transducers has 
been increased by a factor of 1/2 in comparison to the original case and, therefore, 
considerable attenuation of the signals is expected as is also predicted by the theory. 

At the suggestion of one referee, a fourth estimate of vorticity-flux r.m.s. has been 
obtained by invoking Taylor’s hypothesis of ‘frozen ’ turbulence convection on the 
time-dependent pressure signal. Taylor’s hypothesis is a direct outcome of the 
Navier-Stokes equations if all viscous terms and pressure gradients are extremely small 
in comparison to the convection terms during the short times of interest: 

by (11). 

au au- au 1 au 
at as as uc at 

- + U - - O  then -=--- 

where s is the direction along a streamline and Uc is the convection velocity. Although 
pressure may not be a quantity easily described by a transport equation, and despite 
the fact that any convection velocity U, at the wall is zero, a relation equivalent to (16) 
can be assumed to hold for pressure: 

1 ap+ -- aP+ 
ax+ c+ at+’ 

_ - _ -  
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FIGURE 13. Statistics of vorticity flux fluctuations obtained from pressure signals by applying Taylor's 
hypothesis: r.m.s. variation with At' (inner wall scaling) for (a) Re, = 3100, (b) Re, = 5400. 

if a propagation velocity C+ is used instead of a convection velocity. Thus all statistical 
information on the time derivative of the pressure signal can be transformed into 
statistical information on the longitudinal pressure gradient. In the present case the 
time derivative has been approximated by the following finite-difference scheme : 

ap+ [p(t+ +At+)  -p(t+)] 
atfX At+ 

The same referee suggested the use of different time separations At+ in this analysis 
to find out how the values vary as At+ approaches zero. The present pressure data have 
been reanalysed to compute all vorticity-flux statistics from the time derivative of 
pressure. Typical results indicating how the r.m.s. and skewness vary with At+ are 
shown in figures 13(a, b) and 14(a, b) for Re, = 3100 and Re, = 5400 respectively. The 
smallest value of At+ used is that of the digital sampling interval shown in table 1 .  
Multiples of the sampling interval were used for higher values of time separation At+. 
In the present analysis a value of 12.5 has been assigned to C+ which is close to what 
has been found by Moin & Kim (1985). It should be noted that flatness and skewness 
are independent of the value of C+. 

The effect of different spatial/temporal resolution, as indicated by varying At+, is not 
the same for all statistical quantities of vorticity flux. The r.m.s. values, for instance, 
shown in figures 13(a) and 13(b), seem to depend strongly on At+, while skewness, 
shown in figures 14(a) and 14(b), as well as flatness, are much less sensitive to At+. The 
results shown in figures 13 (a) and 13 (b) clearly demonstrate that there is a threshold 
value of At+, Reynolds number dependent, below which a very substantial change in 
the r.m.s. can be observed. These thresholds appear to be At+ x 1 for Re, = 3100 and 
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FIGURE 14. Statistics of vorticity flux fluctuations obtained from pressure signals by applying Taylor’s 
hypothesis: r.m.s. variation of skewness with At+ (inner wall scaling) for (a) Re, = 3100, (b)  
Re, = 5400. 

At+ = 3.5 for Re, = 5400. For values of At+ greater than these thresholds there is no 
significant change in the values of all statistical quantities of vorticity flux. The 
skewness values of the lowest Re, = 3100 case, shown in figure 14(a), are almost 
independent of At+, while the skewness values of the Re, = 5400 case, are affected 
more. Nevertheless, this analysis shows that several statistical quantities of vorticity 
flux may be seriously underestimated by inadequate spatial or temporal resolution. 

The values finally adopted according to the present procedures are indicated by an 
arrow in the figures described above. These values are the results of extrapolation of 
the present data down to At+ = 0. They are also plotted in figure 12 for comparison 
with the results obtained by considering longitudinal or diagonal pressure gradients 
and the cross-correlation data R12. It appears that they agree rather well with these 
data, particularly in the high-Re, cases. 

The relatively good agreement among the various estimates of r.m.s. values of 
vorticity flux obtained by four different methods first indicates a high degree of internal 
consistency of the present data and second provides confidence in the experimental 
techniques used to measure and resolve this quantity. 

Further insight into the physics of vorticity flux can be obtained by looking at (15) 
which shows the dependence of the r.m.s. value on the cross-correlation coefficient R12. 
It can be noted that the r.m.s. value of the vorticity gradients consists entirely of 
contributions from the uncorrelated part of the two pressure signals which may be 
expressed as (1 - R J .  This indicates that if the two pressure signals are 100 % 
correlated there is no vorticity flux away from the wall. The same relation (1 5 )  also 
explains the strong dependence of the r.m.s. of vorticity flux on Re,. By considering this 
equation it can be argued that the r.m.s. of the vorticity gradient varies with Re,, as 
l/Ax+ does. This follows from our results of figure 6(a) which shows that p+ is quite 
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independent of Re, in the investigated range and R,, changes slightly with Re,, 
suggesting that the numerator 2(1- R12)l/*p+ is a rather weak function of Re,. Since 
Ax+ increases fast with increasing Re, (see table l), (&Jz/i3y+)r.m.s. should decrease 
rather quickly with Re,. 

Thus it appears that this strong Reynolds number dependence is genuine. Reynolds 
number effects on turbulence statistics have been the subject of considerable 
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investigations. The recent review of Gad-el-Hak & Bandyopadhyay (1 994) indicates 
that these effects are more pronounced on higher-order statistics. Andreopoulos, Durst 
& Jovanovic (1984), for instance, have reported that Reynolds number effects on 
flatness and skewness of streamwise velocity fluctuations have penetrated the boundary 
layer all the way down to the edge of the viscous sublayer. The present data for 
vorticity flux shows a much stronger effect of Reynolds number dependence. 
Consequently it is plausible to assume that the inner-layer variable vz/u," does not 
provide the appropriate scaling for the vorticity-flux data. Figures 15 (a) and 15 (b) 
show plots of the same data non-dimensionalized with the mixed and outer scales 
respectively. The outer variables 6 and U, give UJS2 as a typical vorticity-flux scale 
while the mixed scale is the geometric mean of inner and outer scales, i.e. 

Neither type of scaling provides any satisfactory collapse of the data. If however the 
momentum thickness 19 is used as a lengthscale and the friction velocity u, as a velocity 
scale then the vorticity-flux data, shown in figure 15(c), are less spread out than with 
any other scaling. They collapse reasonably well to a value 
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FIGURE 17. Probability density function of vorticity flux fluctuations, Re, = 3100. 

The skewness and flatness of the vorticity flux derivative signal, plotted in figures 16 
and 16(b) respectively, show no Re,-dependence. The skewness of auz/ay has a negative 
value of slightly less than -0.1 averaged over the entire range of Re,,, while the 
skewness of awJi3y reaches small positive values. Also plotted in this figure are the 
skewness data obtained from the pressure signals by applying Taylor’s hypothesis. 
These data, which are independent of the value of propagation velocity, also indicate 
a rather weak Re, effect. The values of flatness for both gradients are between 3.6 and 
4.2, indicating the existence of rather rare events of strong amplitude followed by 
extended periods of activities of moderate amplitudes. 

In figure 17 the probability density distribution of the two vorticity gradients are 
illustrated for the case Re, = 3100. The Gaussian distribution is also plotted for 
comparison. It is obvious that the distribution of the present experimental data 
significantly deviates from the Gaussian one. However, the most striking feature of the 
data is the presence of extremely high and low amplitudes of both vorticity gradients 
which, although having low probability of appearance, contribute significantly to the 
statistics. This indicates that the fluid acquires or loses vorticity at the wall during some 
rather violent events followed by periods of rather small fluctuations. The same 
behaviour has been observed in all the experiments at different Re,. The maximum 
amplitude in the signals observed is 9(&0/ay)r.m.8. while the minimum was 
- c l ( a ~ / i 3 ) ~ . ~ . ~ . .  Had the spatial resolution of the probe been inadequate none of these 
events could have been detected. 

Another noticeable characteristic of the vorticity-flux signals is the behaviour of the 
intermittency factor which indicates the percentage of time the signal spends on the 
positive or negative side. The present analysis shows that &oz/3y is positive for 49.5 % 
of the time while the rest of the time it is negative. The intermittency values for the 
hZ/i3y signal are similar. It has been also found that these values are independent of 
Re,. These facts suggest that roughly half of the time the wall acts like a source of 
vorticity and for the other half it acts like a sink of vorticity. 

The correlation coefficient between the two components of 0, was found to be very 
small, of the order of 0.014. This low value is not a surprise because symmetry 
considerations for the present flow suggest that there is no correlation between the two 
components. 
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FIGURE 18. Power spectral densities of vorticity flux scaled by (a) inner wall variables 
and (b) u, and 0. ....., Re, = 3100; -----, Re, = 5400. 

Figure 18 (a)  shows the power spectral densities @,,(w') of the vorticity flux i3wz/i3y 
at two different Reynolds numbers. No appreciable peaks can be discerned in any 
frequency region while a very strong Reynolds number effect is noticeable. In view of 
the results shown in figure 12 this behaviour may be expected. If, however, the 
suggested type of scaling is used, the spectral densities are brought very close. Figure 
18 (b) depicts the data scaled with u, and 8. As can be seen, they collapse fairly well over 
a relatively wide range of frequencies except at very high frequencies where limitation 
of spatial resolution in the case of high Re, may be present. Another feature emerging 
from this figure is the ( W ~ / U , ) - O . ' ~  variation of the collapsed data. The present dual 
scaling, although fundamentally different from the classical mixed scaling, is essentially 
a mixture of inner- and outer-layer scaling. This scaling has been found by Alfredsson 
& Johansson (1984), Shah & Antonia (1989) and Naguib & Wark (1992) to scale the 
bursting frequency satisfactorily over a rather wide range of Reynolds number 
variation. 

The results of the present investigation indicate that one scale may not be enough to 
describe all quantities or events in a turbulent boundary layer. Particularly, the 
vorticity-flux data suggest that wall events associated with vorticity production follow 
a mixed-layer type of behaviour indicating that there is an outer-layer influence on the 
wall. 
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5. Transport equations 
The effort to understand the dynamically significant physical phenomena involved 

in near-wall turbulence through vorticity-flux measurements requires consideration of 
the transport equation for vorticity and strain. The incompressible Navier-Stokes 
equations after proper differentiation are equivalent to a coupled set of transport 
equations for vorticity wi and the strain tensor S,, = @i/axk  + auk/axi).  The equation 
for wi in a Lagrangian frame is 

where D/Dt = a /a t+u ,a /ax ,  is the total derivative. Differentiation of the above 
equation in the direction x ,  normal to the wall leads to the following transport 
equation for the vorticity flux gi2  = aw,/ax,:  

The deformation rate au,/ax, can be split into its symmetric part Sk2 and antisymmetric 
part - ick2j  w j  where c is the alternating tensor, ciik, being 1 if i, j ,  k are in cyclic order, 
- 1 if iJ, k are in anticyclic order and 0 otherwise. Then 

The dynamically significant processes associated with vorticity are the amplification 
and rotation of the vorticity vector by the strain S and vortex tearing at very small 
scales due to viscosity which may induce reconnection of the vortex. The dynamical 
equation for vorticity flux vi2 is more complex: There are in general four ‘source’ or 
‘sink’ terms in addition to the smoothing term, which express amplification and 
attenuation of vorticity flux by the strain S, rotation due to vorticity and nonlinear 
interaction between vorticity and gradients of strain. 

It is remarkable to observe that the strain tensor S plays a role in the transport of 
vorticity flux g similar to that in the transport equation of vorticity o. The solenoidal 
characteristic of vorticity, ao, /ax,  = 0, results in a similar feature for vorticity flux. 
This can be seen by differentiating (21) in the xk direction: 

and interchanging the order of differentiation provided that o, is a continuous 
function. This leads to 

a 
-(Ti, = 0 
axi 

We can also obtain the transport equation for the instantaneous $yz2 by multiplying 
(21) by gi2 and splitting the viscous term into diffusive and dissipative parts: 
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FIGURE 19. Configurations of transducer arrays. 

The term on the left-hand side of (22) can be interpreted as the advection term while 
the first four terms on the right-hand side can be interpreted as the amplification or 
attenuation of $&. The presence of the strain S in three out of four of these terms 
indicates the significance of vortex line stretching and compression by this strain in the 
generation of vorticity-flux fluctuations. Thus vortex line stretching causes not only 
vorticity but also vorticity flux changes. 

6.  Two-component analysis 
The availability of four simultaneous signals from the pressure transducers leads to 

the two-component analysis of their gradients. A key quantity which may help 
understand the near-wall turbulence is the orientation of the vorticity flux vector on the 
wall, n,. Four different combinations among the four transducers were used in this 
analysis, which are shown in figure 19. Configuration 1 combines three transducers, I, 
2 and 3, to compute g12 and g14 at the mid-points between the centres of the pressure 
transducers. Similarly, transducers 2, 3 and 4 were used to calculate vZ3 and g34 on 
configuration 2. Configuration 3 utilizes all four transducers and the resultant 
components are the averages of the parallel transducers pairs, gx = ;(al, + a2,) and 
gz = ;(azl +a,,). The diagonal transducers were used in the last configuration 4. It 
should be noted that in the first two asymmetric configurations the two components do 
not act at the same point while in the last two symmetric ones the resultant components 
act at the centre of the array, i.e. at the origin of the coordinate system. As will be 
shown, the two asymmetric configurations impose a bias in the directional sensitivity 
of the transducer array. 
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FIGURE 22. Conditional probability density function of orientation 6 of vorticity flux vector uw. 

If 0 is the angle between t~, and the positive z-axis as shown in figure 20 then 
8 = tan-' (dwx/dy/ao,/3y) x tan-' (AwJAw,). 0 is positive in the anticlockwise 
direction and varies in the range - 180" < 0 < 180". Statistical analysis of 0 showed a 
large r.m.s. value, of the order of loo", which is indicative of a highly fluctuating vector 
orientation. The distribution of the probability density function of 6 has been 
computed for the four different transducer configurations and is shown in figure 21. 
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0 

The two asymmetric configurations exhibit two peaks at about 45" and - 135" while 
the two symmetrical ones are identical. The symmetry requirements of the present flow 
suggest that the distribution of 8 should be symmetric about the longitudinal axis, i.e. 
about 13 = 90" and -90". The two asymmetric configurations clearly do not possess 
this characteristic while configurations 3 and 4 indicate the expected symmetric 
distribution. In the asymmetric configurations one pressure signal is common in the 
calculation of both pressure gradients. Most likely this increases the correlation 
between the two pressure gradients which results in the skewed distribution of p.d.f. It 
is obvious that the two symmetric configurations suppress this directional sensitivity 
bias which is evident in the asymmetric ones. The analysis, therefore, of the two 
components was performed by using configurations 3 and 4. Although these two 
configurations gave identical results in the p.d.f. of 8, configuration 3 was finally used 
to compute the results shown here because of its better spatial resolution in the 
measurements of each individual pressure gradient. 

Of particular interest is the orientation of mw during the violent events which are 
associated with large excursions in amplitude. In order to further investigate the 
behaviour of these events, conditional sampling analysis has been applied to the 
vorticity flux signals i?uX/i3y and i3u,/i3yY. An 'event' was detected when the absolute 
value of each of the two signals was above a threshold level set at a fraction or multiple 
of the r.m.s. value, k ( i ? ~ / i ? y ) ~ , ~ . ~ . .  Subsequent interrogation of the sign of each signal 
determined the corresponding algebraic value of 8 according to the above definition. 
Figure 22 shows p.d.f.'s of 8 for various values of the threshold level k :  0, which 
corresponds to the original unconditioned data, 0.5, 1.0 and 2.0. It is very remarkable 
to observe that the application of the lowest threshold, k = 0.5, changes significantly 
the distributions by filtering out all small-amplitude contributions and reveals a certain 
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organization in the distribution : large amplitude events are oriented in preferential 
directions of rather narrow bands, one in each quadrant at 0 = +45" and & 135". It 
should be noted that the biasing effect produced by the asymmetric configuration 1 
diminishes the events occurring in the I1 and IV quadrants. 

There is a propensity of alignment between vorticity and eigenvectors of the strain- 
rate tensor S,  which has been shown to take place in the numerical simulations of 
isotropic and homogeneous turbulent flows by Ashurst et al. (1987) and in the 
experimental investigation of vortical structures near the wall in turbulent boundary 
layers by Honkan (1994). It is very likely that the most probable orientation found in 
the present experimental analysis is closely related to the eigenvectors of the strain- 
rate tensor Sij at the wall. 

Figure 23 shows the iso-probability contours obtained from the joint probability 
density function of the two pressure gradients by appropriate interpolation. The shape 
of these contours reflects the low overall correlation between the two pressure gradients 
and the symmetry about the longitudinal direction. The application of the lowest 
threshold to the data, however, reveals preferential directions, as was shown above, 
which suggests strong correlation between the pressure gradients during violent events. 

7. Further discussion and conditional sampling 
An attempt has been made to identify the vorticity flux signals, particularly the high- 

and low-amplitude portions of the signal, with physical phenomena associated with 
the bursting process in the near-wall region of the boundary layer. 

Direct numerical simulations as well as experimental data have shown the existence 
of vortical structures in the near-wall region which carry vorticity directed in several 
predominant orientations. Theodorsen (1952), for instance, first postulated that the 
hairpin or horseshoe vortex is the dominant flow mechanism in turbulent boundary 
layers. Head & Bandyopadyay (198 1) observed horseshoe vortices at low to relatively 
high Reynolds numbers inclined at 45" to the mean flow directions. Offen 8z Kline 
(1975) suggested the formation of either a spanwise vortex or an upward-tilted 
streamwise vortex as the key elements of the burst-sweep mechanism. Robinson's 
(1990) studies of direct numerical simulation of data have shown the existence of quasi- 
streamwise vortices and 'arch' type vortices in the inner region of the boundary layer. 
Falco (1983) associated all these features of streamwise vortices, hairpin vortices and 
streaky structures with the movement of ring-type vortices, called typical eddies and 
pocket wall-region disturbances. The present results demonstrated that there is a 
predominant orientation of the vorticity flux vector which appears to be about 45" to 
the longitudinal direction during mild or violent events. 

At this point it should be emphasized that vorticity flux and pressure gradients, 
which appear directly in the Navier-Stokes equations, are local quantities, like 
vorticity, describing events at the measuring point although they are derived from 
pressure which is a quantity affected globally by contributions from every point of the 
flow field. In that respect vorticity flux can be used to infer local phenomena. As was 
mentioned in the introduction the present measurements of vorticity flux can be 
interpreted as vorticity changes through equations (9) and (10). If the fluid is initially 
irrotational then the change in vorticity represents the actual vorticity of the fluid 
element after the action of the wall as was originally suggested by Lighthill (see figure 
2). However there is a possibility of an initially rotational fluid element or ball 
approaching the wall and then changing its vorticity by A w  In this case the actual 
vorticity of the fluid element after the interaction with the wall is not known. However 
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FIGURE 24. Bursting frequency dependence on threshold value k. 

during very strong events vorticity changes may be substantially larger than the initial 
vorticity. This can be seen by comparing Aw; with a typical vorticity value like the 
mean vorticity at the wall = - 1 : 

For k = 3 and Ay+ in the range between 10 and 100 the above ratio appears to be 
between 1.8 and 18. In that respect it may be possible to assume that during very strong 
events, which involve initially rotational flow elements, the change of vorticity may 
represent, to a good approximation, the actual vorticity itself. Under these 
assumptions, ejections which carry fluid of negative w, away from the wall (see 
Morrison, Subramanian & Bradshaw 1992) are expected to be characterized by 
positive aw,/l)y. Negative l)w2/i3y is expected to be the distinguishing feature of sweeps 
which are indicative of high-speed fluid moving towards the wall. Formation of 
horseshoe or arch type vortices in the near wall which carry negative w, vorticity 
requires events detected in the I and IV quadrants. If a mushroom vortex, which is itself 
an axisymmetric structure, is lifted up away from the wall, the distribution of p.d.f. of 
8 should be uniform across all four quadrants. However the present distribution, 
shown in figure 22, is far from uniform. This indicates that substantial asymmetries 
exists in the near-wall vortical structures. Falco's typical eddies, if these are perceived 
as the tips of the horseshoe vortices, after some substantial rotation may qualify as a 
typical candidate structure of this flow since they possess some of the characteristic 
features exhibited in the p.d.f. distribution of 8. However Falco (1993) attributes their 
origin to the outer layer rather than the wall and therefore the present results cannot 
be interpreted in terms of typical eddies. 

To further explore the physics of these high-amplitude peaks of vorticity flux the 
previously mentioned conditional-sampling technique has been extended to detect the 
peak value of the signal during the time it is above the threshold value. Then all these 
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events are referenced to their peak value and ensemble averaged to obtain the 'typical' 
structure. Events corresponding to high-amplitude signals were detected for both 
positive and negative peaks of vorticity flux for various threshold levels. 

Pressure peaks have been found to be strongly related to near-wall shear layers and 
vortices. Johansson et al. (1987), and Haritonidis et al. (1988) have shown that shear- 
layer structures (Willmarth & Sharma 1984) in the buffer region cause the large positive 
wall-pressure peaks. Johansson, Alfredsson & Kim (1991) who analysed the database 
generated from the direct numerical simulation of channel flows drew similar 
conclusions. It appears therefore that the strong coupling of positive pressure peaks 
and buffer-region shear layers is present in a variety of flows: low-Reynolds-number 
pipe flow, turbulent boundary layers and turbulent spots. Robinson (1990, 1991) has 
associated strong negative pressure peaks with the passage of near-wall vortices, while 
Johansson et al. attributed them to sweep-type motions. 

Since these features of large pressure fluctuations are associated with specific 
physical phenomena the pressure signal can provide the necessary link between the 
educed vorticity flux patterns and physical events with known pressure signatures. 

The significance of the detected flow structures and their dynamics depends strongly 
on their frequency of occurrence. The number of events detected with the present 
algorithm has been found to be a function of the threshold value of k. Figure 24 shows 
the detected events per unit time, n+, scaled with inner variables, as a function of k,  for 
the positive or negative aw,/tly-peak events, the positive or negative aw,/ay-peak events 
and positive or negative pressure-peak events. The present data based on pressure-peak 
detection compare rather well with the data of Johansson et al. (1987) obtained with 
a similar data processing technique. The data of Tiederman (1988), Luchik & 
Tiederman (1987) and Johansson & Alfredsson (1982), both based on the Variable 
Integral Time Average (VITA) technique of Blackwelder & Kaplan (1976) for 
detecting accelerated events in the buffer region, are also plotted for comparison, 
together with the results of Johansson et al. (1991) obtained from the direct numerical 
simulations of a rather low Reynolds number channel flow. 

One distinguishing feature of the present results is the larger number of events 
detected by the vorticity-flux-peak technique than by the VITA or pressure-peak 
techniques. On average, n+ obtained from the vorticity flux signal is about 60-90% 
higher than that obtained from the pressure signal. However, if one considers that the 
p.d.f. of vorticity flux has longer tails than the corresponding p.d.f. of pressure 
fluctuations, this behaviour is not a surprise : vorticity flux signals contain more high- 
amplitude fluctuations than pressure. These fluctuations are features of dynamically 
important events which cannot be easily depicted from the pressure or velocity signals. 

Although n+ is a rather strong function of the threshold level k, the flow patterns 
deduced by these techniques are much less dependent on threshold. It has been found 
in the past by Johansson & Alfredsson (1982) and Johansson et al. (1987) that the 
shape of the patterns obtained at various threshold level settings is, qualitatively, the 
same. In fact, Johansson et al. (1987) demonstrated that all patterns collapse when 
normalized with k .  Figures 25 (a), 25 (b) and 25 (c)  show typical flow patterns of aw,/dy, 
dwJi3y and pressure obtained after conditioning on the positive aw,.dy and detected 
with different threshold levels k = 1, 2 and 3 respectively. The qualitative agreement 
among the three sets of results is fairly good. As the threshold increases stronger events 
contribute more to the ensemble-average pattern and therefore some of the features 
become more pronounced. For this reason only results obtained with k = 3 will be 
presented and discussed here. 

Positive awZ.i3y events correspond very closely to positive pressure events which are 
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FIGURE 25. Conditionally averaged patterns based on awz/tly > 0:  (a) k = 1, (b) k = 2, (c) k = 3. 
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present during ejections and are associated with the shear layers. The main 
characteristic, however, of the patterns shown in figure 25 (c) is the existence of peaks 
in the vorticity flux which may be directly attributed to the formation of vortices in the 
flow. This hypothesis is not unreasonable given the fact that these peaks are very 
narrow and sharp. Under these conditions the major feature of the vorticity flux 
appears to be the change of sign of 3oZ/i3y, occuring at T+ = 0, which indicates the 
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FIGURE 26. Conceptual wall structure. 

existence of a secondary vortex of opposite sign. Since the present technique detects 
vorticity entering the flow from the wall, the patterns of figure 25(c) strongly suggest 
the formation or generation of a new vortex rather than the convection of an existing 
secondary vortex from downstream. The present data show that the formation of the 
primary vortex with positive i3wZ/ay is followed by the formation of a secondary vortex 
with negative aw&. A wave pattern preceding the formation of the vortices is also 
evident in the present data at negative T+. This may indicate the existence of some local 
instability pattern of a near-wall vorticity layer with an apparent period of about 3 
viscous time units. 

The primary vortex, as a result of a strong interaction with the wall, induces a layer 
of secondary wall vorticity of opposite sign (see figure 26) which then separates and 
rolls up to form a vortex of opposite sign. This mechanism of flow separation induced 
by a vortex pair has been proposed by Ersoy & Walker (1986) who investigated 
numerically the interaction of two-dimensional vortex motion near a wall in an effort 
to understand the dynamics of the bursting phenomenon. Experimentally, the existence 
of counter-rotating vortices has been proposed by Blackwelder & Eckelman (1979) in 
the case of longitudinal vortices in the near-wall region. Orlandi 8z Jimenez (1991) have 
also shown the formation of a secondary longitudinal vortex in their numerical 
experiments of artificial wall flow. The duZ/ay pattern of figure 25(c) also shows a 
change of sign at T+ = 7.5 indicating the formation of a counter-rotating pair of 
longitudinal vortices which, however, are a pair of the same vortical structure as the 
&Jay pattern. If the peaks in i3wz/ay represent the core of the vortices then the 
timescale of the formation of the structure is about T$ = 2. This rather short time is 
only a small fraction of the bursting cycle, which is considered to be of the order of 100. 
However, during this rapid evolution there is considerable interaction between the two 
vortices leading to large pressure fluctuations which are associated with the transfer of 
turbulent kinetic energy from the component normal to the wall to the other two and 
the generation of large wall shear stress. At this point it should be mentioned that 
Morrison et al. (1992) detected features in the ejections/sweeps similar to those of 
Falco’s ‘typical eddies’ which they observed in the logarithmic region of a boundary 
layer over a smooth wall. Their o,-ensemble-averaged structure during sweeps is very 
similar to the i3uz/i3y pattern shown in figure 25(c). They also measured considerable 
overshoot of the local shear stress signal during the passage of the counter-rotating 
pairs of vortices. 

Klewicki, Falco & Foss (1992) have measured the average duration time of positive 
or negative w, events as a function of Re,. For Re, = 2870, which is very close to the 
present case of Re, = 3100, a value of 2 is measured for each of these events which are 
characteristic of vortex-ring-like ‘typical eddy’ motions in the outer region of the 
boundary layer where corrugations in the turbulent/non-turbulent interface take 
place. The average duration of these events, which have a large timelife, is the same as 
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FIGURE 28. Conceptual structure of (a) sweeps, (b) ejections. 

the formation time of the present aw2/8y events at the wall. This may suggest that these 
typical eddies are counter-rotating vortical structures which are originated at the wall 
and subsequently transported away from the wall with substantial change in their 
duration, although transformation from a counter-rotating pair to a single vortex may 
take place. There is however, a possibility that these structures are also formed 
somewhere inside the boundary layer and then dispersed throughout the flow field as 
has been claimed by Falco (1993). The fact that they have been observed in the present 
study to be formed at the wall during ejections and to pass through the logarithmic 
region again during ejections and sweeps (see Morrison et al. 1992) indicates that most 
probably they are originated at the wall, and that they constitute one of the principal 
mechanisms of communication and interaction between the inner and outer layers 
since they carry a significant amount of shear stress and kinetic energy. 

A change in sign is also observed in the longitudinal vorticity flux at about T+ = 7.5. 
This, however, leads to a rather weak vorticity flux pattern which cannot be 
characterized as a discrete secondary longitudinal vortex. In that respect the present 
results agree with Robinson's (1 990) finding that occurrence of a counter-rotating pair 
of longitudinal vortices (legs) is rather rare at low Reynolds numbers. However, 
isolated longitudinal vortices carrying negative w, have been found in the present 
study. Figure 27(a) shows the flow patterns of the data conditioned on negative i3wx/i3y. 
Pressure and awZ/i3y closely follow the pattern of each other with some time lag. At 
T+ < -6.0 i3w2/ay is positive and then changes sign to become negative, indicating 
again the existence of counter-rotating vortices. However, at T+ > 0 the spanwise 
component increases substantially. This type of configuration is consistent with the 
characteristics of symmetric arch-like vortices with one leg oriented entirely in the 
longitudinal direction. 

More evidence for the existence of flow structures carrying mostly strong spanwise 
vorticity are shown in figures 27 (b) and 27 (c)  where the awJay-conditioned results are 
plotted. Sweeps (u > 0, ZI < 0) are present just upstream of a vortex with dominant 
spanwise vorticity and are associated with @/at < 0 (ap/i3x > 0) and ejections 
(u < 0, zj > 0) are present just downstream (T+ < 0) of these vortical structures where 
pressure increases with time (@/ax < 0). As can be seen from figure 27(6) sweeps are 
mostly associated with negative vorticity flux i3w2/ay and positive aw,/ay. At the end 
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FIGURE 29. (a) Classical model of ejections and sweeps in reference to an arch type of vortex. 
(b) Conceptual model of combined ejections/sweeps. 

of the sweeps aw,/ay has reached its largest negative value. It is apparent from the 
results that ejections (figure 27 c) are generating considerable activities involving large 
longitudinal vorticity. 

Sweeps, which are usually characterized as high-momentum outer-layer fluid 
moving towards the wall, can be considered as an impulse of a jet-like fluid motion 
splashing on the wall. Morrison et al. (1992) and Morrison & Bradshaw (1991) 
postulated that sweeps are inverted mushroom vortices moving towards the wall and 
then toppled by mean vorticity to form an ejection further downstream. The major 
implication of this model is that there are no arch-type or A-type vortices in the near 
wall and that the lobe of the mushroom vortex with negative w, accounts for what has 
been observed as arch-type or A-type vortices. The model indicates that these 
mushroom vortices are recycled during the bursting process without accounting for 
their origin. The present results, however, suggest that structures similar to distorted 
mushroom vortices are indeed formed at the wall as a result of some instability 
mechanism of the thin vorticity layer in the region next to the wall, and then they are 
ejected away from the wall, where they have a rather long life. 

It should be noted that the results of the present conditioning refer to structures with 
either positive or negative peaks in aw,/ay. A typical flow structure however may 
contain fluid carrying both peaks of vorticity flux, one positive and one negative. 
Sweeps, for instance, may be characterized by ap/at < 0 with aw,/ay < 0 as in figure 
27(b) for T+ < 0 and @/at < 0 with awZ/i3y > 0 as in figure 27(c) for Tf > 0. Figure 
28 (a)  depicts a candidate structure for the strong-vorticity-flux events with one positive 
w, approaching the wall. 

Similarly, events with ap/at > 0 may be associated with a structure like that of figure 
28(b) which carries fluid with positive and negative w, away from the wall. This type 
of structure is identified with derivatives in the longitudinal direction ao,/ax < 0 while 
that of figure 28(a) is characterized by aw,/ax > 0. 

Thus the typical flow structure at the wall consists of sweeps and ejections which are 
associated with both negative and positive spanwise vorticity w, and positive and 
negative longitudinal vorticity w,. This flow structure should be compared with the 
classical view of sweeps and ejections which can be found downstream and upstream 
respectively of a strong arch-type vortex with negative w, (see figure 29a). If the flow 
structure of figures 28 (a) and 28 (b) has to comply with the classical view, the two lobes 
of the mushroom vortices of figure 28(a,b) which carry negative vorticity have to 
coincide and the typical eddy structure may look like what is shown in figure 29(b). 

However, there is one more possible scenario which is also in accord with the present 
conclusions and is closer to the classical view of a strong vortex with negative w, which 
brings down to the wall fluid upstream of this vortex. This fluid splashes on the wall 
like a jet impinging on a solid surface and the upstream-moving fluid creates a vorticity 
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FIGURE 30. (a) Conceptual model of inrushing fluid as a jet impinging on the wall. 

(b) Conceptual mechanism of ejections and sweep formation. 

layer with positive w, which then rolls up into a vortex moving away from the wall. 
Meanwhile the upstream-moving fluid forms a vorticity layer with negative w, which 
also separates and rolls up into a vortex. Figures 30(a) and 30(b) depict this scenario. 

8. Conclusions 
An attempt has been made to measure time-dependent vorticity flux density at the 

wall beneath a two-dimensional zero-pressure-gradient, turbulent boundary layer. 
Since the net viscous force on an incompressible fluid element is dominated by the local 
gradients of vorticity the understanding of their features is the key to determining the 
turbulence structure. The concept of vorticity flux was first introduced by Lighthill 
(1963) who pointed out the significance of solid boundaries as distributed sources or 
sinks of vorticity. It indicates the amount of vorticity entering the flow, which cannot 
be obtained from considering vorticity at the wall. Lighthill also suggested a 
mechanism explaining how a local pressure gradient tangential to the boundary can 
cause an initially irrotational fluid element to roll up along a stationary wall and acquire 
vorticity due to the non-slip condition at the wall. 

Four high-frequency-response and high-sensitivity subminiature pressure trans- 
ducers were used to measure time-dependent pressure gradients simultaneously. 
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Statistics of the pressure fluctuations, as measured individually by each of these 
transducers, agree rather well with previous results reported by other investigators. 
This established a certain degree of reliability of the probe for vorticity flux 
measurements. The present analysis indicated that the major contributions to vorticity 
flux come from the uncorrelated part of the two pressure signals which contain a wide 
range of eddy size scales from large to small eddies. Large scales may also contribute 
to vorticity flux. Two pressure signals, for instance in the form of sine waves with the 
same frequency, are perfectly correlated and produce zero vorticity flux. However, if 
a small phase difference exists between them then the correlation drops to a value 
below 1 .O and a non-zero vorticity flux is produced. Although large scales contribute 
to vorticity flux, small scales seem to contribute relatively more because the degree of 
correlation among small scales is considerably lower. This imposes a severe requirement 
on the spatial resolution of the vorticity flux probe. Extension of the theories of Corcos 
(1963) and Wilmarth & Roos (1965) on the resolution of pressure measurements to 
include cases of pressure gradient measurements predicted a larger attenuation of 
vorticity flux than of pressure for all eddy scales which are smaller than the transducer 
size. It is believed that the present measurements, although probably not entirely 
immune from the problem of spatial resolution, have captured most of the energy of 
fluctuating pressure and vorticity flux in the high-frequency range of the spectra. In 
particular, the spatial resolution in the low-Re case is one of the best ever achieved. 

The results indicated a rather strong dependence of all vorticity flux statistics on Re, 
when plotted in inner wall scales. Scaling the data with B and u, substantially reduced 
the Reynolds number dependence and indicated an outer-layer influence on the wall. 

The distribution of the probability density function reveal the presence of extremely 
high and low amplitudes of both vorticity gradients which contribute substantially to 
the statistics although their probability of appearance is rather low. It appears that the 
mechanism by which a fluid element acquires vorticity at the wall is a rather violent 
event with high amplitude of 8wZ/8y and 8wz/ay followed by periods of small- 
amplitude fluctuations. 

The transport equations derived for the vorticity flux, c, show that the mechanism 
of vortex stretching or compression which is present in the vorticity transport equation 
is also present here. This indicates possible similarities in the description of physical 
mechanisms by both vorticity and vorticity flux. 

The results of the conditional-sampling analysis indicate that a very significant 
small-scale turbulent structure is present when large contributions to vorticity flux 
occur. The patterns obtained show that during strong events opposite vorticity is 
present immediately after the primary vortex appears. The data suggest that the 
primary vortex induces a layer of secondary wall vorticity of opposite sign which rolls 
up to form a vortex of opposite sign. Thus the major wall structure appears to be 
bipolar, most likely in the form of mushroom vortices. This is also supported by the 
orientation of the vorticity flux vector. In addition, ejections and sweeps are associated 
with this structure : during ejections fluid in the form of a bipolar vortex is leaving the 
wall violently while during sweeps a similar structure impinges on the wall. Thus the 
structure of ejections and sweeps appears to be more complicated than simple violent 
outgoing or inrushing fluid in the near-wall region. 
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Appendix 
Following Uberoi & Kovasznay (1 954) and Corcos (1 963), for a homogeneous and 

stationary turbulent flow, the measured pressure p m  sensed by a transducer of diameter 
2r with instantaneous time response can be derived from the true pressure field through 
the following relation: 

(A 1)  

where x is the position vector, K ( s - x )  is the response kernel, i.e. the contribution to 
the output signal at time t which is caused by unit pressure at location s. It is also 
assumed that K(s)  = l /g  whenever s corresponds to a point on the transducer face and 
K(s) = 0 otherwise. Here cr is the sensing area of the transducer and i is the unit vector 
in the x-direction. 

If the measured spanwise vorticity flux is defined as 

where 2r is the diameter of each transducer, then substituting (A 1) into (A 2) gives 

1 
w,(x, t )  = 5 { Jm p(s, t )  K(s - x - 2ri) dA(s) - p(s ,  t )  K(s - x) dA(s) 

The measured frequency spectrum is given by 

where wf is the frequency and R, is the cross-correlation defined for vorticity flux as 

RwmG 7) = <%JX, 0 w,(x + c, t + 7)). (A 5 )  

If w,(x, t )  and w,(x+c, t f ~ )  are substituted by (A 3), then after some manipulation 
the following relation can be obtained : 

where R, is the cross-correlation of the true pressure field and dA is the area element 
at points s and 1. Then the frequency spectra $,,,m will take the form 
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where F is the cross-spectral density given by 

This term has been modelled by Corcos (1963) and Willmarth & Roos (1965) as 

where A and B are cross-spectral similarity solutions of the parameters u f [ / U C  and 
wrq/Uc respectively and y and [ are the components of the distance vector y. $ p  is the 
true frequency spectrum of pressure. 

These functional relations are also supported by experimental evidence. Their 
analytical expressions and numerical values are found in Corcos (1963) and Willmarth 
& Roos (1965). Then the previous expression for $,, is rewritten using (A 9) as 

where E, and ey are the components of E, and O(&) is Corcos' correlation function given 

O(F) = Irn K(s) K(s + t.) dA(s). 

Similarly, K(s) K(s + t. - 2rz3 dA(s). (A 12) 
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FIGURE 32. Ratio of spectrum of vorticity flux and true spectrum of pressure 
as a function of wf r /  U,. 

The latter function is represented pictorially in figure 31 as the area intersected by two 
transducer surfaces at a distance e-2ri  from each other. And B(s+2ri) can be 
represented in a similar fashion. 

Since there is no previous information about the true frequency spectrum of vorticity 
flux, q5,(wf), a best estimate has been obtained from equation (A 10) in the limit of r 
approaching zero. Figure 32 depicts values of obtained as a function of wr/ U,. 
This figure clearly shows the rate of convergence of the above ratio as a function of the 
relative transducer size. 

Similar estimates can be obtained for the other vorticity flux component 
applaz = Pvaw,/ay. 
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